direct product, non-abelian, soluble, monomial
Aliases: C2xC32:D8, C62.11D4, (C3xC6):D8, C32:2(C2xD8), C22.14S3wrC2, C3:Dic3.29D4, D6:S3:9C22, C32:2C8:4C22, C3:Dic3.7C23, C2.16(C2xS3wrC2), (C3xC6).16(C2xD4), (C2xC32:2C8):4C2, (C2xD6:S3):11C2, (C2xC3:Dic3).94C22, SmallGroup(288,883)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC32:D8
G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=d-1 >
Subgroups: 688 in 130 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2xC4, D4, C23, C32, Dic3, D6, C2xC6, C2xC8, D8, C2xD4, C3xS3, C3xC6, C3xC6, C2xDic3, C3:D4, C22xS3, C22xC6, C2xD8, C3:Dic3, S3xC6, C62, C2xC3:D4, C32:2C8, D6:S3, D6:S3, C2xC3:Dic3, S3xC2xC6, C32:D8, C2xC32:2C8, C2xD6:S3, C2xC32:D8
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C2xD8, S3wrC2, C32:D8, C2xS3wrC2, C2xC32:D8
Character table of C2xC32:D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 12 | 12 | 4 | 4 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 4 | 4 | 4 | 4 | -2 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ16 | 4 | 4 | 4 | 4 | 2 | 0 | 0 | 2 | -2 | 1 | 0 | 0 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ17 | 4 | 4 | 4 | 4 | 0 | -2 | -2 | 0 | 1 | -2 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ18 | 4 | 4 | -4 | -4 | 0 | 2 | -2 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | -2 | 1 | -1 | 2 | -1 | 1 | -1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS3wrC2 |
ρ19 | 4 | 4 | -4 | -4 | 2 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | -1 | 1 | -2 | 2 | -1 | 0 | 0 | 0 | 1 | 1 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS3wrC2 |
ρ20 | 4 | 4 | -4 | -4 | -2 | 0 | 0 | 2 | -2 | 1 | 0 | 0 | 2 | -1 | 1 | -2 | 2 | -1 | 0 | 0 | 0 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS3wrC2 |
ρ21 | 4 | 4 | -4 | -4 | 0 | -2 | 2 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | -2 | 1 | -1 | 2 | 1 | -1 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS3wrC2 |
ρ22 | 4 | 4 | 4 | 4 | 0 | 2 | 2 | 0 | 1 | -2 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2 | -1 | -1 | 2 | 2 | 1 | 0 | 0 | 0 | √-3 | -√-3 | 0 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2 | 1 | -1 | 2 | -2 | -1 | 0 | 0 | 0 | √-3 | -√-3 | 0 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 1 | 2 | 2 | -1 | -1 | -2 | √-3 | √-3 | -√-3 | 0 | 0 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | √-3 | -√-3 | -√-3 | 0 | 0 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | -2 | 2 | -1 | 1 | 2 | -√-3 | √-3 | √-3 | 0 | 0 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 1 | 2 | 2 | -1 | -1 | -2 | -√-3 | -√-3 | √-3 | 0 | 0 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2 | -1 | -1 | 2 | 2 | 1 | 0 | 0 | 0 | -√-3 | √-3 | 0 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
ρ30 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2 | 1 | -1 | 2 | -2 | -1 | 0 | 0 | 0 | -√-3 | √-3 | 0 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C32:D8 |
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)
(1 35 22)(3 24 37)(5 39 18)(7 20 33)(9 46 26)(11 28 48)(13 42 30)(15 32 44)
(2 23 36)(4 38 17)(6 19 40)(8 34 21)(10 27 47)(12 41 29)(14 31 43)(16 45 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 47)(26 46)(27 45)(28 44)(29 43)(30 42)(31 41)(32 48)
G:=sub<Sym(48)| (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,35,22)(3,24,37)(5,39,18)(7,20,33)(9,46,26)(11,28,48)(13,42,30)(15,32,44), (2,23,36)(4,38,17)(6,19,40)(8,34,21)(10,27,47)(12,41,29)(14,31,43)(16,45,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,48)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,35,22)(3,24,37)(5,39,18)(7,20,33)(9,46,26)(11,28,48)(13,42,30)(15,32,44), (2,23,36)(4,38,17)(6,19,40)(8,34,21)(10,27,47)(12,41,29)(14,31,43)(16,45,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,47)(26,46)(27,45)(28,44)(29,43)(30,42)(31,41)(32,48) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)], [(1,35,22),(3,24,37),(5,39,18),(7,20,33),(9,46,26),(11,28,48),(13,42,30),(15,32,44)], [(2,23,36),(4,38,17),(6,19,40),(8,34,21),(10,27,47),(12,41,29),(14,31,43),(16,45,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,47),(26,46),(27,45),(28,44),(29,43),(30,42),(31,41),(32,48)]])
Matrix representation of C2xC32:D8 ►in GL6(F73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
33 | 50 | 0 | 0 | 0 | 0 |
22 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 13 |
0 | 0 | 0 | 0 | 60 | 43 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
60 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 13 |
0 | 0 | 0 | 0 | 60 | 43 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[33,22,0,0,0,0,50,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,30,60,0,0,0,0,13,43,0,0],[1,60,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,30,60,0,0,0,0,13,43] >;
C2xC32:D8 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes D_8
% in TeX
G:=Group("C2xC3^2:D8");
// GroupNames label
G:=SmallGroup(288,883);
// by ID
G=gap.SmallGroup(288,883);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,675,346,80,2693,2028,362,797,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export